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Figure 1: The Workflow of 3D Wheel Models Visualization Retrieval Framework. Initially, the geometric features of the
3D wheel models are visualized through preprocessing, resulting in 2D geometric feature images. Subsequently, based on the
geometric feature regions selected by the user, these are transformed into combined feature descriptors for similarity calculation.
Ultimately, the retrieval results are obtained by sorting the similarity values in descending order.

ABSTRACT

Similarity retrieval of 3D product models is crucial for promoting
the reuse of product design information and enhancing the produc-
tion efficiency of enterprises. The 3D wheel models, widely used
in industries such as automotive, railway, and aviation manufactur-
ing, pose significant challenges in retrieval due to the high simi-
larity between their global and local geometric features. This is
because existing methods: (1) fail to effectively represent the ge-
ometric features of 3D wheel models, especially the local features
that users focus on; (2) lack the flexibility in feature descriptors
used for similarity calculation, making it difficult to accurately dis-
tinguish and match different models when dealing with highly sim-
ilar local features. To address these problems, this paper proposes
a visualization retrieval framework for 3D wheel models based on
customizable geometric features regions. Firstly, a geometric fea-
ture extraction method is proposed that visualizes the geometric
features of the 3D wheel models as binary geometric feature im-
ages, addressing the problem of representing both global and local
geometric features. Secondly, building upon these geometric fea-
ture images, a customizable geometric features regions selection
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method is designed, enabling users to select multiple local geomet-
ric features to generate combined feature descriptors for similarity
calculation in 3D wheel models retrieval. Finally, the effectiveness
of the proposed framework is validated through experiments on in-
dustrial product datasets and user evaluations by domain experts,
demonstrating its ability to promote the effective reuse of 3D wheel
models product information.

Index Terms: Visualization retrieval, 3D model retrieval, 3D
wheel models, geometric feature visualization, customizable re-
gions selection.

1 INTRODUCTION

As a fundamental element of modern industrial manufacturing pro-
cesses, 3D models of the product embed rich and highly valuable
manufacturing information [1]. Statistical data indicates that 3D
models are extensively reused in the design of new products [2].
Innovative designs represent only 25% of new products, while the
remaining 75% are derived from the reuse or refinement of exist-
ing components [3]. 3D wheel models (3DWM) are extensively
utilized in the automotive, railway, and aviation manufacturing in-
dustries, where they play an indispensable role. And the reuse of its
information holds significant value. However, due to the high simi-
larity in geometric features among related products, distinguishing
between 3DWM using conventional retrieval methods proves to be
particularly challenging [4]. Consequently, the development of ef-



ficient techniques for 3DWM retrieval, with the goal of enhancing
information reuse efficiency, has emerged as a significant challenge
in the current industrial manufacturing sector.

The content-based 3D model retrieval method has been shown
to be effective [5, 6, 7, 8] . Among these, deep learning-based
approaches have garnered extensive research attention due to their
significant advantages in extracting both global and local features
[9, 10, 11]. While these methods offer significant advantages in
geometric feature extraction for 3DWM, several challenges remain
when applying them in practical retrieval scenarios. Firstly, the pro-
cess of representing geometric features is complex [12], making
it difficult for users to understand the relationship between the re-
trieval results and the model features. This lack of comprehensibil-
ity can hinder the judgment of product information reuse. Secondly,
these methods require large amounts of data for training[13], and
the training process is both expensive and time-consuming. Lastly,
although there is substantial research on visual neural networks that
supports experimentation and fine-tuning for deep learning tech-
niques [14, 15], this process can be a costly learning task for users
in industrial design scenarios.

In product design, designers’ retrieval requirements for 3DWM
go beyond global-level matching. They frequently need to retrieve
local geometric features and detailed local features within highly
similar local structures. However, existing methods primarily fo-
cus on global feature matching and no selectivity, which is insuf-
ficient for meeting the high-frequency demands for local feature
retrieval in industrial design contexts. This limitation prevents de-
signers from fully utilizing the design resource information in the
existing product library, thereby affecting the efficiency and quality
of product development.

In order to tackle the previously discussed challenges,this pa-
per proposes a visual retrieval framework for 3DWM. The starting
point is to visualize 3DWM'’s geometric features into binary ge-
ometric feature images, where 3D geometric features are mapped
onto 2D geometric shapes. This geometric feature image can simul-
taneously represent both global and local features while maintain-
ing significant intelligibility. Building upon this, we design a geo-
metric feature region segmentation and interaction strategy, which
enables users to customize the region of interest in geometric fea-
ture images as combining feature descriptors. The combining fea-
ture descriptors to achieve multi feature similarity calculation in
3DWM. The main contributions of this paper are as follows:

* A method for extracting geometric features in 3DWM.
This method maps the subtle concave convex structures of
the model to binary images through axial rotation scanning
algorithm, generating understandable and easily comparable
3DWM geometric feature images. And it has good robust-
ness, does not rely on data training, and can ensure the stabil-
ity and accuracy of feature extraction.

* A method for dividing geometric feature regions and com-
bining features. This method firstly divides the geometric
feature image of the 3DWM into four feature regions based
on the needs of domain experts: core, flange, spoke, and rim.
Secondly, it designs a multi-local feature retrieval scheme that
combines geometric feature images with custom selected re-
gions and segmented features. Constructing composite fea-
ture descriptors for similarity calculation through customiz-
able selection can improve the accuracy of 3DWM retrieval.

» Evaluation of retrieval framework. Through the analysis of
the experimental results of retrieval on industrial product data
sets and the user evaluation of domain experts, we verify its
effectiveness in 3DWM retrieval.

2 RELATED WORK

In this section, we provide a review of the existing 3D model re-
trieval, global geometric feature descriptor and local geometric fea-
ture descriptor.

2.1 3D Model Retrieval

3D model retrieval has consistently been a prominent region of re-
search attention among scholars [14, 15]. Driven by application
scenarios, the initial 3D model retrieval task aims to retrieve mod-
els of the same category from a large number of different classes
[16, 17, 18]. This greatly improves the management efficiency of
the large number of 3D models generated with the advancement
of CAD/CAE technology. However, as product manufacturing and
industry development have become increasingly refined, 3D model
retrieval tasks have gradually evolved to address finer grained goals,
such as product part assembly retrieval and product design fea-
ture retrieval [19, 20]. This indicates that through the combination
of theoretical research and practical experiments, fine-grained 3D
model retrieval [21, 22] is more suitable for meeting the growing
demand for more accurate and professional retrieval tasks in appli-
cation scenarios.

3D model retrieval methods can be classified based on the types
of data features they rely on, primarily including text-based and
content-based methods. The text-based retrieval methods [23] of-
fers advantages in terms of simplicity and computational efficiency,
as it matches descriptive text or labels associated with the models,
making it particularly suitable for model libraries with well-defined
annotations. However, it is highly dependent on the accuracy and
completeness of the text annotations, and its retrieval performance
tends to degrade when models lack sufficient descriptions or con-
tain inaccurate labels. In contrast, content-based retrieval methods
[24] focus on analyzing the intrinsic features of the models, such
as geometric shape, structure, and texture, enabling more precise
matching by circumventing the need for text labels. The content-
based retrieval methods better captures the actual characteristics
of the models, particularly in scenarios where text annotations are
inadequate or absent, thus offering significant advantages in such
cases.

2.2 Global Geometric Feature Desctriptor

Content-based retrieval techniques for 3D models primarily focus
on the physical attributes of the models, enabling model similarity
retrieval through the extraction and analysis of geometric features,
topology, and other physical properties.

Osada et al. [25] introduced the concept of shape distribution,
pioneering a method that represents the geometric properties of
3D shapes as statistical histograms. he shape matching problem
is reduced to a comparison of probability distributions, enabling
3D model retrieval based on statistical features. This approach of-
fers the advantages of computational simplicity and insensitivity to
the model’s representation form. However, it also faces limitations,
particularly its insensitivity to the local details of the model. To
address the limitations of shape distribution methods, researchers
have proposed various enhancement strategies[26, 27, 28]. While
these methods improve the accuracy of feature description to some
extent, the histogram vectors remain highly sensitive to transforma-
tions that significantly impact the model’s surface, such as Gaussian
noise interference and mesh simplification, which in turn reduces
retrieval efficiency. To further enhance the robustness of feature
representation, Vranic et al. [29] first proposed a model retrieval
method based on spherical harmonic functions. Building upon
this foundation, subsequent research has further refined the ball-
harmonic function-based method by incorporating more complex
transforms or functions to improve performance, such as the mod-
ified ball-harmonic function [30], the ball-harmonic entropy func-
tion [31], and the ellipsoidal ball-harmonic function [32], among



others. However, the ball-harmonic projection relies on global ex-
pansion, which makes it challenging to effectively capture local fea-
tures (e.g., small protrusions or depressions). As a result, it may
lead to the misclassification of locally distinct models as similar,
thereby compromising retrieval accuracy. To represent the topol-
ogy of 3D models, Hilaga et al. [33] proposed a multi-resolution
Reeb image that captures the topology of 3D models at different
levels of resolution. While Reeb images provide a stable represen-
tation of topology across different resolutions, they lack the ability
to distinguish between distinct parts of the model. In contrast, Sirin
et al. [34] proposed a skeleton fill-rate-based retrieval method for
both 2D and 3D models. By comparing the skeleton fill rates of dif-
ferent models, the method facilitates effective model retrieval. Al-
though both the Reeb image and skeleton map-based methods can
effectively differentiate between primary and secondary structures
within 3D models, they still face challenges in accurately decon-
structing 3D models, with the deconstruction process being sensi-
tive to model noise.

With the rapid development of deep learning, numerous new ap-
proaches have emerged in the field of 3D model retrieval. These
methods can extract the geometric features of 3D models more
comprehensively and can be classified into four categories based
on their feature representation: voxel-based methods [35], point-
cloud-based methods[41], view-based methods[36], and B-rep-
based methods [37]. Wu et al. [38] proposed a neural network
model called 3D ShapeNets, which is based on a Deep Belief Net-
work (DBN) [39]. They designed a Convolutional Deep Belief Net-
work (CDBN) to represent the 3D model as a probability distribu-
tion of binary variables on a voxel grid, allowing for feature extrac-
tion directly from the voxel-represented 3D grid. Qi et al. [41] de-
veloped the PointNet model, which can directly process disordered
point cloud data and perform feature extraction and global feature
fusion through a multi-layer network structure. Su et al. [42] pre-
sented the MVCNN network, which projects the 3D model into
multiple 2D views, then uses a convolutional neural network to ex-
tract features from each view. The multiple view features are subse-
quently fused via a maximum pooling operation to generate a global
descriptor for model retrieval. Methods such as [43, 44, 45] have
built upon MVCNN, achieving improved retrieval results through
continuous innovations and optimizations in the view projection
and convolution methods. However, view-based approaches still
struggle with unifying the description of the internal and external
features of objects. To address this limitation, Lin et al. [40] devel-
oped the 3D Orthogonal Integral Transform (OIT), which consists
of three separate integrals in orthogonal planes that are rotated to
cover all directions, allowing for a more comprehensive description
of the geometric features of 3D models. Retrieval methods based
on voxels, point clouds, and views often focus primarily on the geo-
metric shape of 3D models, underutilizing topological information.
To resolve this issue, several deep learning-based retrieval meth-
ods leveraging B-rep representations have emerged in recent years.
Colligan et al. [46] proposed an innovative 3D shape representation
method based on the B-rep model, enabling the learning of both
the surface geometry and topology of a CAD model. Additionally,
Hierarchical CADNet, a hierarchical graph convolutional network,
learns the hierarchical structures of B-rep graphs. Hou et al. [47]
transformed B-rep data into a shape descriptor known as a B-rep
graph and applied a graph pooling (FuSPool) algorithm on graph
convolutional networks (GCNs). They developed FuS-GCN, a new
neural network for aggregating topological and geometric features,
effectively learning global 3D-CAD shape descriptors.

The retrieval of 3DWM, like other types of 3D model retrieval,
faces several challenges when using deep learning methods. Firstly,
these methods require large amounts of data to train a pre-trained
model for feature extraction, but in some product application sce-
narios, users are unable to provide such large datasets. Secondly,

deep learning models are often treated as ‘black boxes’, which
makes the feature extraction process less interpretable. The lack of
interpretability hinders users from understanding the logic behind
the retrieval results, which may pose limitations in applications that
require high levels of transparency. In contrast, we propose using
geometric feature images as descriptors to represent the geomet-
ric features of 3DWM, a method that does not rely on data train-
ing. This method enhances robustness and interpretability, enabling
users to better understand the relationship between geometric fea-
tures and similarity retrieval results.

2.3 Local Geometric Feature Descriptor

Most existing 3D model retrieval methods focus on global shape
features, which compare overall shape similarity. However, as de-
signers increasingly require the ability to locate and modify spe-
cific local structures within model libraries, recent methods have
emerged that emphasize local feature-based retrieval to better ad-
dress these needs.

Among the local feature-based retrieval methods, two repre-
sentative approaches are proposed in the literature [48, 49]. The
method presented in [48] enables local structure retrieval by con-
structing multi-scale feature representations using scale space tech-
niques. This approach first extracts the local features of the model at
various scales, organizes these features into a binary tree structure,
and ultimately performs similarity comparison of the local struc-
tures through a subgraph matching algorithm. In contrast, [49]
extends the Reeb graph, which represents the topology of the 3D
model as a graph structure, and uses graph matching techniques to
achieve local feature retrieval. While these two methods theoreti-
cally allow for local structure retrieval, they present several notable
drawbacks in practical applications: first, the computational com-
plexity involved in constructing and matching subgraphs is high and
time-consuming; second, the recognition accuracy of local features
is low when dealing with complex industrial models [19], which
makes them unsuitable for meeting the demands of practical indus-
trial applications.

To address the above problems, Bai et al. [50] proposed a local
structure retrieval method for 3D models based on DBMS graphs
(multi-resolution skeleton graphs) and subgraph matching. This
method constructs a hierarchical graph structure representation by
extracting multi-resolution skeleton features from the model and
utilizes an improved subgraph matching algorithm for local struc-
ture retrieval. While this approach enhances retrieval efficiency to
some extent, it still suffers from high computational complexity and
is sensitive to model noise, which limits its applicability to real in-
dustrial data.

On the other hand, methods based on B-rep (boundary repre-
sentation) model segmentation are also commonly employed for
sub-part retrieval. These methods first utilize the geometric and
topological information of the model to decompose it into a set of
parts, then classify and extract features from these parts, and finally
use these features for part retrieval. Jayaraman et al. [52] pro-
posed an innovative approach to represent the geometric features of
the model by using the U- and V-parameter domains of the curves
and surfaces, and constructing an adjacency graph to represent
the topology of the model. Building on this representation, they
introduced the UV-Net architecture, which combines an image-
based convolutional neural network (CNN) and a hierarchical graph
neural network (GNN). This approach demonstrates strong perfor-
mance in both supervised and unsupervised tasks across multiple
datasets, surpassing other 3D model retrieval methods. However,
UV-Net also has its limitations: while it performs well on labeled
datasets, its model training currently relies exclusively on labeled
data and cannot be directly applied to unlabeled datasets, which re-
stricts its applicability in broader scenarios.

Compared to other class models, 3DWM exhibits more detailed



features, which makes the retrieval of local features more challeng-
ing. Guided by user needs in practical application scenarios, this
paper proposes an innovative visual interactive retrieval framework
to overcome the limitations of existing local feature retrieval meth-
ods of 3DWM. Firstly, the framework is user-centered, allowing
users to freely configure local feature descriptors and providing
flexible customization for local feature description and retrieval.
Secondly, it eliminates the need for labeling unlabeled data, en-
abling direct application to unlabeled datasets, thereby significantly
expanding the scope of the method’s applicability.

3 METHODOLOGY
3.1 Workflow of Framwork

Our work is driven by the needs of industrial designers. Product de-
sign experts within the enterprise aim to identify a method for ge-
ometric feature representation and retrieval that supports 3DWM,
without relying on large-scale data training. Through close col-
laboration with these experts (D1, D2, D3, D4, D5), and drawing
from existing literature as well as multiple iterative participatory
meetings, we have identified three core tasks for the visualization
retrieval frameworks of 3DWM:

T1: Utilize visual, graphical geometric feature characterization
to help the user distinguish local features among similar
3DWM. Without the need for training data, the image rep-
resented by the geometric features allows for the observation
of local feature differences in highly similar 3DWM, further
supporting the comparison of similarity.

T2: Support interactive, user-centered selection of local geomet-
ric features based on geometric representation. The selec-
tion of local geometric feature regions should cater to users’
frequent need for comparing multiple local features, and the
relationship between feature descriptors and retrieval results
should be easily interpretable.

T3: Ensure that similarity calculation is comprehensible within
the context of the geometric feature images and interactive re-
trieval framework. The similarity calculation method should
establish a clear connection between geometric features and
the retrieval results of 3DWM, enabling users to gain an in-
tuitive understanding of the features and facilitating the full
exploitation of the retrieval results.

The framework based on the requirements proposed in this pa-
per is illustrated in Fig.1, consisting of three key modules: geomet-
ric features visualization, interactive multi-local geometric features
selection, and similarity calculation. The shape descriptor of the
3DWM is comprised of two primary components: global geometric
feature and multi-local geometric features. Firstly, the 3D geomet-
ric features of the 3DWM are visualized as 2D images, from which
global geometric feature descriptor is constructed. The global geo-
metric feature descriptor is designed to effectively distinguish local
geometric features of similar models. Then, the geometric feature
image of 3DWM is divided into four key design regions: the core,
flange, spoke, and hub. Using interactive visualization, customiz-
able local geometric feature descriptors are developed to efficiently
characterize retrieval features. Finally, a flexible similarity calcu-
lation method, based on geometric image features and descriptor
features, is proprosed to enhance the precision and accuracy of re-
trieval results.

3.2 Geometric Feature Visualization

Based on T1, it showed that the user expects to intuitively establish
a relationship between the 3D geometric features of the 3DWM
and the geometric features used for similarity calculation, without
relying on complex feature extraction and representation methods.

Additionally, the user seeks to effectively observe local geometric
feature differences between similar models. In response to this, we
design a content-based method to visualize the 3DWM’s geomet-
ric features as 2D images. These 2D images allow users to clearly
observe the key design features and local details of the 3DWM,
thereby better understanding the feature descriptors for 3D model
retrieval. First, we extract the geometric features of the 3DWM
by designing moved line segments and axially rotated model inter-
sect, which encompass internal grooves, facets, and other intricate
details. Then, the generated intersection points are mapped onto
a 2D plane to produce geometric feature images, which serve as
visual descriptors for the geometric features of 3DWM. The geo-
metric feature images generated by this algorithm can capture mul-
tiple key dimensional aspects of 3DWM, including, but not limited
to, surface texture, thickness, and shape, thereby offering a more
comprehensive and accurate representation of geometric features.

The 3DWM geometric feature visualization process is shown in
Fig. 2. Specifically, a line segment intersector AB is first set up
at the axial position of the 3DWM along the Z-axis direction and
sampled according to the pre-set parameters. Fig. 2 (a) shows the
schematic diagram of feature extraction of the wheel model in the
3D scene, and Fig.2 (b) shows the feature image after feature ex-
traction and mapping. In Fig. 2, AB is the line intersector, r is
the radius of the bottom surface of the 3DWM, £ is the maximum
height of the 3DWM, and 6 is the axial step (counterclockwise)
angle.

The specific steps of the feature extraction algorithm are outlined
in Algorithm 1. Initially, a line segment intersector AB is created
at the axial center of the 3DWM. This line segment is then pro-
gressively moved along the X -axis towards the edge of the 3DWM,
with the movement governed by the set radial step distance d. At
each step, the 3DWM is rotated counterclockwise around the Z-axis
by the axial step angle 6. During this process, the line intersector
AB collides with the 3DWM,generating an even number of colli-
sion points. Two pairs of these points are of particular : one where
the line intersector penetrates the 3DWM (penetration point), and
one where it exits (exit point). By calculating the coordinates of
these collision points, the thickness of the 3DWM at the current
location can be determined. Specifically, the thickness distribution
of the 3DWM along the Z-axis is obtained by utilizing the differ-
ence in the coordinates of the penetration and exit points. Using
this spiral sampling method, the spatial structural characteristics of
the 3DWM in the X oY plane can be extracted.

After calculating the thickness information from the difference
between the penetration and exit points, the data must be scaled
and mapped into the geometric feature image. Specifically, the
thickness value at each sampling point is mapped to the correspond-
ing position on the feature image based on its location in the XoY
plane and its height along the Z-axis. In the geometric feature im-
age (Fig. 2(c)), both solid and insubstantial information at each
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Fig. 2 The Process of Visualizing the Geometric Features of 3DWM
into 2D Geometric Feature Images.
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Algorithm 1 Geometric Feature Extraction Algorithm

Require: Radial 3D model M, radial unit step length d, axial unit
step (counterclockwise) angle 0, geometric feature map of M
with width and height m and n pixels

Ensure: geometric feature map Py, x, of M

1: Compute the columnar envelope M* of M

2: Calculate the bottom radius r and height 4 of M*

3: Construct a coordinate system with the bottom center of M*
as the origin of the Cartesian coordinate system, where the XY
axis is located on the bottom of M* and the Z-axis points to the
top center of M*

4: Define the line segment AB that overlaps the Z-axis, where the
coordinates of A are (0,0,—0.14) and the coordinates of B are
(0,0,1.1h)

5:i<=0

6: while A, < randi<mdo

7: Calculate the set F < {CyDy,C1D{,CoD; -
ments AB intersecting the 3D model M

-} of line seg-

8: j<0
9: while j < ndo
10: if jx (h/(n— 1)) is located on any intersection segment
CyD, of F then
11: P,'j <=1
12: else
13: P,'j <=0
14: end if
15: jE=j+1

16: end while

17: i<i+1

18: M < Rotate (M, 0,27)
19: A<:A+(i><(r/(m ))70, Olh)
20  B<=B+(ix(r/(m—

21: end while

sampling point are represented by different values, resulting in a
two-dimensional image that reflects the thickness distribution of the
3DWM. This process allows for the accurate representation of the
spatial structure and geometric features of the 3DWM in the feature
image.

In the proposed geometric feature extraction algorithm, the pa-
rameter settings are crucial for both the effectiveness of geometric
feature visualization and the performance of the algorithm. The
following key parameters are primarily considered: the 3DWM ro-
tation angle 6, the intersection line step size d, and the width m
and height n of the geometric feature image. These parameters
are designed based on the practical retrieval requirements. First,
regarding the rotation angle 6 of the 3DWM, we conducted ex-
periments to compare the density of intersection line sampling for
angles ranging from 1 to 2 degrees. Based on the results, a rota-
tion angle of 1.8 degrees was selected, which is equivalent to sam-
pling 200 times for each complete rotation (360 degrees). Second,
since uniform sampling better represents the geometric features of
the 3DWM, we further compared different values for the width and
height of the geometric feature image to assess their ability to cap-
ture the fine details of the 3DWM’s geometry shape. After testing,
we set m = 20000 and n = 300, with the intersection line step size
d = xMax/20000, where xMax represents the maximum value in
the X direction of the model’s bounding box. It is important to
note that both the visualization of geometric features and the simi-
larity calculation are influenced by the initial rotation angle of the
3DWM. To minimize the bias caused by this effect, we manually
adjusted the initial rotation angle for all models between feature
extraction steps.

Overall, this feature extraction method based on rotary sampling
effectively captures both the surface features of the 3DWM and its
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Fig. 3 Geometric Feature Image Region Division. (a), (b) and (c)
show the positions of the core, flange, spoke, and rim corresponding
to the segmentation of the model’s front and back views and geo-
metric feature images. (1),(2),(3), and (4) are segmented images of
the geometric feature images.

internal concave and convex structures. It accurately extracts the
structural information of the wheel through the calculation of multi-
ple collision points, which are then mapped into a binarized feature
image, providing a reliable data foundation for subsequent analysis
and processing.

3.3 Interactive Multi-local Geometric Features Selection

Based on T2, users require a method to customize local multi-
features for input, in order to meet the frequent and diverse fea-
ture retrieval needs in design application scenarios. To address this
challenge, we propose a retrieval method based on user-selected re-
gions and segmented features from geometric feature images. First,
the geometric feature image is divided into segments according to
the geometric regions of the 3DWM, creating segmented feature
regions. An interactive selection interface is then provided, allow-
ing users to customize the regions of the geometric feature image.
Finally, the user’s selected regions are integrated into a combined
feature descriptor. The following two sections provide a detailed
explanation of the proposed approach.

3.3.1 Geometric Feature Segmentation

According to the distinct concave and convex structures of each
segmented part of the 3DWM mapped in the feature image, we
designed a component segmentation method generalized to the
3DWM by taking advantage of the 3DWM'’s cartographic struc-
ture. The method can accurately subdivide the geometric feature
image of the 3DWM into four parts: core, flange, spoke and rim,
and the specific division is shown in Fig. 3. Prior to feature image
segmentation, the binarized feature image is first transformed into
a two-dimensional matrix P € {0,1}"*". Here, m represents the
number of rows in the matrix, corresponding to the number of pixel
elements along the rows of the image, and n represents the number
of columns in the matrix, corresponding to the number of pixel el-
ements along the columns of the image. Using Equations 1, 2, and
3, three segmentation points, k1, k2, and k3, can be obtained. k
(Equation 1)is the geometric feature image segmentation points of
3DWM core and flange.

n
kl—min{j|ZPij>O} 6
i=1
where, since the core portion of the 3DWM is completely blank and
devoid of any entities, the first column in which an entity appears is
the starting position of the flange. By summing the feature image
columns, the first non-zero column indicates the split point between
the core and the flange. k, (Equation 2) represents the segmenta-
tion points of the 3DWM flange and spoke in the geometric feature
image.

kZ:min{j|Pi,j:1/\Pi,j+1:0,j€{172>""%}} @



The split point between the flange and the spoke is identified as the
highest point in the first half of the feature image. As shown in
the geometric feature extraction plot, as the line intersector moves
outward along the X-axis in the flange region, the flange’s thick-
ness gradually increases until it reaches the junction with the spoke,
where both the thickness and the height reach their maximum val-
ues. Therefore, in this method, by traversing the rows of the matrix
P (representing the height of the feature image) and the columns of
P (representing the width of the feature image), the first non-zero
point is identified as the highest point of the feature image. The
equation constrains the range of values of the columns to ensure
that the division point is located in the first half of the feature im-
age. k3 (Equation 3) represents the segmentation points between
the 3DWM core and flange in the geometric feature image.
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As show in Fig. 3, in the second half of the image, the height of the
spoke part is lower, while the height of the rim part is significantly
higher. Therefore, the point at which the spokes are divided from
the rim is determined by summing the matrix in columns at 2/3
of the height from top to bottom of the second half of the feature
image. In the summation matrix, there is no entity in the spoke
portion of the 3DWM until there is an entity in the rim portion of
the wheel. Therefore, the column coordinates of the first non-zero
point of the summation matrix are chosen as the split point between
the spoke and the rim.

3.3.2 User-selected Geometric Features Regions Interac-
tion Method

Building upon the segmented design of geometric features, we have
further developed a feature retrieval interaction scheme, as illus-
trated in Fig. 4. This interaction design is composed of four com-
ponents: the feature segmentation selection region(Fig. 4(c)), the
custom feature selection region(Fig. 4(b)), the wheel schematic dia-
gram(Fig. 4(a)), and the data prompt region(Fig. 4(d)). The feature
segmentation selection region is organized according to the four
main components of the wheel: the wheel core, rim, spokes, and
flange. A block selection button is provided to offer users quick
access to feature selection options. Additionally, a concentric fea-
ture interaction design with the left wheel shape is incorporated to
enhance the user’s perception of the retrieved features. The cus-
tom feature selection region is designed designed as a self-directed
brushing zone with a shape display, enabling users to select regions
based on specific local features as needed. For example, users can
select features from the flange hole region or the spoke shape sec-
tion for retrieval. The wheel schematic diagram serves as both a
design example and background image of the wheel. It is based on
the concentric arrangement of the front view of the wheel core, rim,
spokes, and other key components, and is designed to interact with
the user’s selections in the segmented selection region on the right,
providing an interactive display. The data prompt region assists
users in selecting the current feature data. The starting and ending
positions of each feature region are marked as 0 and 1, respectively,
and the regions selected by the user are mapped to proportional data
displays according to their corresponding relationships.

It is important to note that the similarity of design features is
not based on a single feature; rather, users need to search for mul-
tiple features, such as flange similarity and spoke fork similarity.
To address this, we combine the feature segmentation selection re-
gion with the custom feature selection region. By simultaneously
selecting features from both regions, a combined feature descriptor
is created for retrieval.
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Fig. 4 Interactive Design for Users to Select Geometric Feature Re-
gions. (a) is the wheel schematic diagram. (b) is the custom feature
selection region. (c) is the feature segmentation selection region.
(d) is the data prompt region.

3.4 Similarity Calculation

Based on T3, and in conjunction with T1 and T2, it is evident that
the similarity calculation method serves as a crucial foundation for
ranking 3DWM retrieval results. It plays a key role in helping users
understand the correlation between the retrieval results and the re-
trieval features. A higher similarity value between the query model
and the comparison model indicates a greater degree of similarity
between the two models. We propose a variable similarity calcula-
tion method based on the combination of feature descriptors which
are flexibly selected by users. If the geometric feature descriptor is
a single-feature segmented descriptor, the XOR method is applied
to calculate the similarity between the geometric feature images. In
the case of a combined descriptor consisting of multiple feature re-
gions, the XOR method is first used to calculate the similarity of the
geometric feature segmentation maps within the selected regions.
Subsequently, the importance of each selected region is assessed,
and the weighted ratios of the different selection regions are aggre-
gated into a total ratio for calculating the overall similarity. The
weighting rule is multiplying the similarity ratio of each selection
by the ratio of the length of the selection in the X direction to the
total length of the user’s selection in the X direction. The weighting
strategy for the combined features is based on the segmented fea-
tures, thereby ensuring the consistency of the weighting rules when
calculating the regions selected by the user.

Specifically, as outlined in Algorithm 2, the process begins by
determining the geometric feature map to be compared for region
segmentation based on the scale range selected by the user. For the
wheel core, which lacks a physical entity, the length of the feature
map is directly compared to calculate similarity. For the three more
complex structural components—the flange, spoke, and rim—the
XOR operation is applied to the corresponding images to compute
the similarity ratio. It is important to note that the XOR method is
specifically chosen over the AND method, as XOR can more com-
prehensively capture the spatial feature information of the model,
including the features of non-solid parts such as bolt holes, spoke
gaps, and others. These features are critical for accurately identi-
fying the wheel model. To ensure the accuracy of the feature com-
parison, the algorithm incorporates a weighting ratio. Specifically,
the similarity ratio of each component is multiplied by the ratio of
the component’s length in the direction of comparison to the total
length of the user’s selected region in the same direction. This al-
lows for a comprehensive assessment of the influence of different
feature regions on the final similarity result. All weighted ratios are
then aggregated to produce a final total similarity ratio. Finally, the
algorithm ranks all results in descending order based on similarity,
outputting the calculated similarity results.

A point to consider is that the segmented feature region im-
ages obtained in Section 3.3.1 are variable-length sequences, as the
width m of the images is not exactly the same. This is due to the
different sizes of the 3DWM models. However, since the size differ-
ences in the 3DWM wheels are within a certain range, a truncation
strategy is adopted for the similarity calculation between images
with different widths. Specifically, when comparing the similarity
between two images with different widths m, the image with the



Algorithm 2 Similarity Calculation Algorithm

Require: Geometric feature images Wheel core atlas D, Flange
atlas Dy, Spoke atlas D3, Rim atlas Dy, each with ¢ objects, re-
spectively, a query model user-defined constituency set 7' of
width and height my; x n; contains d data instances that are
scaled to the query model geometric feature image according
to an array of constituency proportions sent to the algorithm by
the interactive selection, where my, = {xz — Xi |, Xy is the mini-
mum value of the kth selection on the X-axis, xj is the maxi-
mum value of the selection on the X-axis, and #n;, is the Y-axis
value of the selection image.

Ensure: The similarity retrieval result set R = {ay, by, }, where a,
is the wheel model ID and b, is the similarity ratio between the
wheel and the retrieved wheel.

1:i<=0
2: whilei < cdo
3: j<0
4: Wheel similarity ratio b; <= 0
5: while j < d do
6: Divide the geometric feature image of the correspond-
ing atlas according to the proportion in 7} (divided into Dy; or
Dy, D3i, D)
7: if The T; selection is located in the core of the wheel
then -
b j = ij]’
: else
10: Compare the feature image pixel points of 7; and

Dy; (or D3;, Dy;) in the flange (or spoke, wheel rim) image set
using exclusive XOR method to calculate the similarity ratio b;
11: end if .
. J
12: bi<:bi+bj><m
13: jej+1
14: end while
15: R < (a;,b;)
16: i<i+l
17: end while
18: Sort R in ascending order based on b, return R

wider width is truncated to match the width of the other image.

4 EXPERIMENT AND USER EVALUATION
4.1 Experiment on Wheel Dataset
4.1.1 Dataset Construction and Initialization

The work presented in this paper focuses on inter-class similarity
retrieval for automotive wheels. The dataset utilized should consist
of CAD models of automotive wheels with consistent design spec-
ifications. However, among the existing publicly available CAD
model repositories (e.g., the ESB model repository [53], the Cad-
Net40 database [47], and the DMUNet database [54]), there is a
scarcity of high-precision 3D CAD models specifically designed
for automotive wheels.

We construct a 3DWM dataset based on the STEP standard in
collaboration with wheel manufacturing enterprises. This dataset
is derived from real-world design cases provided by these enter-
prises, and the models are anonymized to ensure their accuracy and
applicability for experimental purposes. Through discussions with
industry experts, 105 representative 3DWM are selected, encom-
passing a diverse range of wheel design styles and specifications.
Additionally, we assign a numbering system to the model set (start-
ing with ‘W’ and numbered sequentially from 1 to 105) and extract
both front and side views of the models for the presentation and
evaluation of retrieval results.

4.1.2 Global Geometric Feature Retrieval Comparison

To verify the effectiveness of our method in global geometric fea-
ture retrieval, we compare it with the approachs Fourier Descrip-
tors [51] and the proposed in UV-Net [52]. Fourier descriptors can
maintain the invariance of rotation, scaling, and reflection, making
them highly suitable for shape matching. The UV-Net in enhances
feature robustness and retrieval accuracy by mapping the geometric
features of each face of the model to a two-dimensional mesh com-
posed of curves and surfaces, and connecting them through adja-
cency graphs. In contrast, the geometric feature extraction method
proposed in this paper analyzes the model’s surface structure, ex-
tracts key features, and maps them to a two-dimensional image.
These methods are capable of incorporating both global and local
information, making them suitable for a comparative analysis of
retrieval performance.

Fourier Descriptors Method: Project the spoke surface of the
model onto a 3D plane, compute Fourier descriptors, and measure
the similarity between models using cosine similarity.

UV-Net Method: First, using the network architecture and train-
ing parameters provided by the UV-Net model, we obtained 512-
dimensional high-dimensional feature vectors for each 3DWM.
Next, a similarity measurement criterion was established based on
the Euclidean distance between feature vectors, and the retrieval
results were computed.

To ensure the fairness of the comparative experiment, the re-
trieval results are visualized in descending order of similarity, with
similarity decreasing from left to right.

The retrieval results of three methods for the same wheel model
are shown in Fig. 5. In these results, the model most similar to
the query is ranked first, with the similarity decreasing as the rank-
ing position moves lower. During the experiment, two wheel mod-
els with distinct designs were selected as query samples: one with
a large number of spokes and a complex structure, and the other
with fewer spokes and a simpler structure. This selection ensured
a comprehensive validation of the method. In the retrieval results,
model numbers that differ significantly from the query model are
highlighted in red and bold. These differences primarily reflect
mismatches in the number of spokes and flange structure (e.g., the
number of flange holes) when compared to the query model.

Query Method Top 8 Results
wio2 wst ws2 wat was wo w21 wa3
o~ AP o ~ o™, TS T ~
T2 APy S0 2 AT | - St a )
w1 UvNet A =59 e —~ [ A )
i S o 2y oy A 7 A
)

55 ws2 woz ws wzs ws3 we wioz wis
RN = A ~ . D ! ~
A Fourer A P2 :~ A ANIA LIN Pl N

Descriptors A0 Y L7y 2is7 S \»aw)
i / A
w00 wa3 w7 wss w2 wa wes was
e, 20, <. A 27% 205, AN -

ows QA4 A Al Ah Ak LB AA SN
D Ty Oy Y Y W Oy BN

Wo4 w3s we3 wr4 wig W30 ws7 wa

A Al A & D 4ap o)
we  oww OB B A A2 B A 4B (D)
7 >y Y 9y %o Y <D

A e Y A A AR A D A A
ooscrpors L) A7y Ry 0755 b7l U7 Ly oy

wis wer wer v v wis we was
a4 o Mo Ao o A D S

Ours ST — ~ =% e (V20
"W W W W A Y &

Fig. 5 Comparison of Our Method with the Global Feature Retrieval
Results of Fourier Descriptors [51] and UV-Net [52]. Models in
the search results that exhibit significant differences from the query
model are highlighted in red and bold. The main differences in-
clude variations in the number of spokes and the flange structure
compared to the query model.

Through comparative analysis, it can be observed that, for both
the complex model W1 and the simpler model W16, the models
retrieved using our proposed method exhibit a high degree of sim-
ilarity to the query model in terms of wheel structure. Although



some models with differing spoke numbers appear in the retrieval
results, they are not ranked highly. In contrast, models retrieved
using the UV-Net method often show significant structural differ-
ences from the query model. The Fourier descriptors method yields
the worst results, with the lowest similarity in model structure and
features. Therefore, in terms of the visualization of retrieval results
and the degree of alignment with the actual wheel structure, our
method outperforms Fourier descriptor and UV-Net.
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Fig. 6 Comparison Between the the Geometric Feature Images of
W1, W27, and W52. (a), (b), and (c) are enlarged images of each
red rectangular box. (d), (e), and (f) are enlarged images of each
circular box.

Fig. 5 shows that the structure of the third model (W52) in the
UV-Net method differs significantly from that of W1, while the
structure of W27 in our method is closer to that of W1. We compare
the geometric feature images of models W1, W52, and W27 (shown
in Fig. 6). It is evident that the serrated structure of the spoke sec-
tion in the zoomed-in local image of the geometric feature of model
W52 (Fig. 6(c)) differs significantly from the serrated structure of
the query model W1 (Fig. 6(a)). In contrast, the W27 model re-
trieved using our method (Fig. 6(b)) is more consistent with W1.
Additionally, the red ellipse in the rim feature image of the W52
model appears blank (Fig. 6(f)), whereas the corresponding struc-
ture in W27 (Fig. 6(e)) is more similar to that of W1 in the same
region (Fig. 6(d)). This further demonstrates that the geometric
feature images extracted by our method effectively represent the
model’s geometric characteristics and offer better interpretability.

4.1.3 Interactive Feature Evaluation

The comparison of global geometric feature retrieval highlights the
advantages of our geometric feature representation method. To fur-
ther validate the effectiveness of our feature region retrieval ap-
proach, we conducted retrieval experiments on three segmented re-
gions: flange, spoke, and rim. Fig. 7 compares the global geometric
feature retrieval results with those of each segmented region. For
the core part retrieval, the similarity assessment mainly relies on the
length of the geometric feature image of the wheel core (i.e., the ra-
dius of the wheel core). Since the retrieval strategy and assessment
method for the wheel core part are clear and intuitive, they will not
be validated here.

The localized retrieval results for the flange part indicate that
models W5, W35, and W84 are highly similar in the localized re-
gion. However, despite the similarity in local flange details, these
models differ significantly in overall appearance from the query
model. This difference underscores the diversity in flange design,
providing designers with a wider range of options for reusing this
part.

In the spoke section, the W46 model, which differs more in
spoke structure from the query model, not appear in top 8, while the
more similar W78 model ranks higher. Although the W78 model
has a narrower spoke section, it shares the same number of spokes
and exhibits a structure more similar to that of the query model. Ad-
ditionally, similar to the W39 model in the global feature retrieval
results and the W19 model in the spoke-specific retrieval results,
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Fig. 7 Comparison of the Global Feature Retrieval Method in This
Paper with the Retrieval Results of Flange, Spoke, and Rim Fea-
tures. The numbered in red means the models with significant re-
trieval differences.

wheels with the same number of spokes but larger structural differ-
ences from the query model rank lower.

For the rim section, a comparison was made with the side view
of the global feature retrieval results to more clearly visualize the
differences in rim design. The side view shows that models such as
W100 and W33 feature a protruding design in their rim structure,
whereas the rim of the query model displays a more rounded shape
without any noticeable protrusion.

In summary, local feature retrieval significantly refines search
results compared to global feature retrieval. However, it does not
fully allow ‘on-demand’ retrieval, as it relies solely on fixed, prede-
fined regions. To enhance this process, we designed an interactive
experiment allowing users to customize the selection of local fea-
tures.
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Fig. 8 Comparison of Selected Regions Retrieval Results. The
customized selection retrieval results are compared with the cor-
responding flange and spoke local feature retrieval results. Regionl
is 0%-100% of the flange part and 0%-100% of the spoke part. Re-
gion2 is 50%-100% of the spoke part.

In the customized retrieval process, cross-region retrieval (0% to
100% of the flange and spoke regions, referred to as selection1) and
small percentage selection within the same region (50% to 100% of
the spoke region, referred to as selection2) were used as input cri-
teria. The retrieval results are shown in Fig. 8. Regionl results
show a significant improvement over the flange section’s single lo-
cal feature retrieval. In flange retrieval, models such as W5 and
W35, which differ structurally from the query model W1, no longer
top the ranking. Instead, models like W33, structurally similar to
W1, are prioritized. In Region?2 retrieval, model W12, with bifurca-
tions at the end of the spoke, shows a lower ranking than the over-
all spoke portion retrieval. Similarly, models like W19 and W78,
which significantly differ from the query model in spoke structure,
also experience ranking declines.



In summary, our method shows minimal difference from the UV-
Net method in global geometric feature retrieval. Distinguishing
fine-grained feature differences in global geometric features is chal-
lenging. However, our method, which allows users to select feature
regions, effectively supports fine-grained feature retrieval for wheel
models. Moreover, it enhances interpretability by linking feature
inputs with retrieval results through geometric feature image anal-
ysis.

4.2 User Evaluation on Wheel Dataset

In this section, we further evaluate the operability and comprehen-
sibility of our framework through experiments and interviews with
thirteen domain experts (D1 to D13).

4.2.1 Evaluation of Geometric Feature Comparisons

For the comparative evaluation of global geometric features, we se-
lected 8 3DWM models with highly similar shapes but different
local features, as identified by domain expert D1. The remaining
experts were divided into two groups for four experiments. In the
first experiment, two models were compared; in the second, four
models; in the third, six models; and in the fourth, eight models.
Experts ranked the size, thickness, and spoke hole of each model,
and we recorded the completion times. One group (D2, D3, D6,
D7, D10, D11) used commonly employed design software, while
the other group (D4, DS, D8, D9, D12, D13) used our geometric
feature images. To ensure experiment accuracy, both groups began
each comparison with the same software initialization state.
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Fig. 9 Comparison of Experimental Data Between Two Groups.
The blue line represents Group 1, and the orange line represents
Group 2.

Fig. 9 presents the recorded experimental data results. The re-
sults show little difference in the time taken by the two groups when
comparing two models. However, a time difference appears when
comparing four models. For six and eight models, domain experts
using our geometric feature images completed the tasks in the short-
est time. These results demonstrate that our method effectively
characterizes both global and local geometric features of 3DWM,
facilitating easier understanding and identification of key features
by users.

4.2.2 User Interview on Interactive Retrieval

We invited thirteen domain experts to evaluate our framework, fo-
cusing on its usability, comprehensibility, and potential improve-
ments. All experts have extensive knowledge in wheel product de-
sign and a particular interest in similarity model retrieval. We ini-
tially spent 20 minutes introducing the key technologies and visual

interfaces within the retrieval framework. The experts actively par-
ticipated in discussions on the framework’s requirements and fea-
tures, quickly becoming familiar with the system’s functions. We
then presented two search cases to the experts and gave them 30
minutes to explore the system freely. Afterward, we held face-to-
face discussions to gather their feedback and insights.

All experts agreed that the framework presented in this study
strongly supports 3DWM retrieval, with customized geometric fea-
ture region selection enhancing the understanding of retrieval re-
sults and contributing to more effective design information refer-
encing. Expert D1 emphasized that the design of geometric feature
images allows users to quickly and accurately capture 3DWM fea-
tures. Expert D2 suggested adding a region scaling display function
to complement the current geometric feature images, which would
enhance local feature comparison. Experts D3 and D4 noted that
the custom background design for the selection region helped clar-
ify the relationship between geometric features and retrieval results.
Expert D5 highlighted that the ability to quickly select segmented
feature regions enhances feature comparison tasks and improves
retrieval efficiency. Expert D7 recommended adding an option to
visualize hierarchical feature comparisons, allowing users to refine
their search results based on feature categories. Expert D13 empha-
sized the importance of user customization, suggesting that users
should be able to save their preferred settings for future retrieval
tasks. All experts agree that the system demonstrates high compre-
hensibility, particularly in the feature correspondence between the
retrieval model and its results.

In response to the suggestions from experts D7 and D13, a re-
trieval option in the results has been designed in the system for
enterprise application scenarios. This option allows users to per-
form hierarchical feature retrieval and gradually refine the retrieval
scope. Additionally, the system incorporates a button to save the
current selections, enabling users to review valid search settings.
In practical use, users have reported that these functions are conve-
nient and user-friendly.

4.3 Experiment on ModelNet40

ModelNet40 [55], a widely used benchmark dataset, provides a di-
verse set of 3D models for evaluating retrieval algorithms. It con-
tains CAD models from the 40 categories. We evaluate our geo-
metric feature representation method based on the test set of the
ModelNet40 dataset. Since our method does not rely on training
data, we directly extract geometric features from the models in the
test set and perform similarity calculations. To assess the sensitivity
of our method in shape retrieval, we did not adjust the pose of the
models in the test set but only applied uniform scaling to the model
sizes for feature extraction.
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Fig. 10 PR Curve Based on Geometric Feature Extraction Method.

Fig. 10 shows the PR curve for model retrieval based on geomet-



ric feature extraction method. The shape of the PR curve reflects
the performance of the model. The closer the curve is to the upper-
right corner, the better the model’s performance, indicating high
precision and recall. Based on the PR curve, the method proposed
in this paper demonstrates relatively poor retrieval accuracy.
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Fig. 11 TOP 10 retrieval results for Wardrobe_0102 (a) and Gui-
tar_.0169 (b). The retrieval results are sorted in descending order
from left to right.

Top 10
Results

Are the retrieval results accurate? We carefully examined the
Top 10 retrieval results for each object and observed an interest-
ing phenomenon. Fig. 11 presents two representative retrieval
results. In Fig. 11 (a), we show all models in the ‘wardrobe’
category from the dataset, along with the Top 10 retrieval results
for wardrobe_0102. Among the retrieval results, wardrobe_0107
belongs to the ‘wardrobe’ category and shares a similar structure
with wardrobe_0102, featuring four legs. However, the remaining
nine results belong to different categories, yet these nine models are
structurally more similar to wardrobe_0102 in terms of width and
height than to other models in their respective categories. The sim-
ilarity value of xbox_0109 is 0.56, which might explain the larger
structural difference observed. In Fig. 11 (b), we show 20 models
from the ‘guitar’ category and the Top 10 retrieval results for gui-
tar_0169. Among the results, guitar_0215 and guitar_0220 share a
similar structural form and detailed features with guitar_0169. The
other guitar models exhibit consistent structural forms, indicating
high similarity in geometric features. However, three results from
categories other than ‘guitar’ have similarity values close to each
other, but their structures differ from the retrieved model. These
results suggest that the geometric feature representation method in
this paper performs well for retrieving models with highly similar
geometries and consistent poses. However, when retrieving from
different categories, there can be situations where models from dif-
ferent categories exhibit similar geometric features, leading to po-
tential errors.

4.4 Limitations

Our retrieval framework has certain limitations. First, geometric
features are not suitable for capturing small geometric differences.
The geometric feature mapping scheme designed in this paper is
based on design shapes and does not account for geometric differ-
ences smaller than Imm. Second, the geometric feature visualiza-
tion method is suitable for 3D models with highly similar structural
shapes. Due to the high global similarity features of 3DWM, when
applied to models from other categories or those with large pose
differences, our method may produce certain similarity calculation
errors. This is because the method relies on the similarity of ge-
ometric feature images, and errors are more likely to occur when
the structural differences between 3D models are large but their
geometric feature images remain similar. This limitation makes
our method more applicable to 3D models with similar structural
shapes, such as wheel models and gear models. Third, the geomet-

ric feature segmentation method also has limitations. The geomet-
ric feature segmentation method proposed in this paper is suitable
for segmenting features of models with highly similar structural
shapes. When there are significant shape differences between mod-
els, segmentation of the geometric feature images may lead to un-
controllable sequence length matching, thus complicating the simi-
larity comparison. Finally, the retrieval time and complexity of the
method presented in this paper are influenced by the retrieval con-
ditions selected by the user. When the user selects fewer retrieval
conditions, the retrieval efficiency is higher; however, as more fea-
ture areas are selected, the retrieval efficiency gradually decreases.

5 CONCLUSION

To address the challenges of reusing 3DWM information in re-
trieval, this paper proposes an interactive retrieval framework based
on geometric feature images for user-selected geometric feature re-
gions. First, to accurately capture the key geometric features of
3DWM, a global geometric feature visualization method based on
axial rotation model intersection is designed. The geometric feature
images generated by this method encompass the size, thickness,
and shape structure of the 3DWM, providing a visual representa-
tion of the model’s global geometric features. Second, based on
geometric feature images and the design characteristics of 3DWM
models, an interactive method is developed that allows users to de-
fine segmented region features and select comparative features flex-
ibly through customizable multi-local geometric feature combina-
tion descriptors. Third, a similarity calculation method tailored for
the interactive framework is proposed, leveraging geometric fea-
ture images and custom combination feature descriptors to ensure
the interpretability of the relationship between retrieval results and
the corresponding retrieval features. To validate the effectiveness of
the proposed method, experiments and user evaluations were con-
ducted on real industrial datasets. The results demonstrate that this
method outperforms traditional global shape retrieval methods, par-
ticularly user-centered visual interactive retrieval methods, offering
greater flexibility and interpretability in practical applications and
providing more accurate and efficient tools for 3DWM retrieval and
information reuse.

In future work, we will focus on adaptive geometric feature visu-
alization and multimodal representation. Our current rotation sam-
pling feature extraction method uses a fixed step size (i.e., during
the rotation sampling process, the wheels rotate by the same an-
gle at each step), leading to sparse sampling points near the center,
which may introduce similarity calculation errors. Therefore, en-
hancing the sampling density in feature-rich regions is a key region
of focus. Additionally, we aim to integrate multimodal CAD in-
formation (such as label data) to further enhance the accuracy of
retrieval models. Furthermore, we will optimize the geometric fea-
ture representation method to expand its applicability to a broader
range of model categories, thereby improving the universality and
accuracy of the method.
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